Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Theor Appl Genet ; 137(2): 40, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296887

ABSTRACT

KEY MESSAGE: Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.


Subject(s)
Gossypium , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Cotton Fiber , Phenotype , Plant Structures/metabolism , Gene Expression Regulation, Plant
2.
BMC Genomics ; 24(1): 176, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37020266

ABSTRACT

BACKGROUND: Geranylgeranyl pyrophosphate synthase (GGPS) is a structural enzyme of the terpene biosynthesis pathway that is involved in regulating plant photosynthesis, growth and development, but this gene family has not been systematically studied in cotton. RESULTS: In the current research, genome-wide identification was performed, and a total of 75 GGPS family members were found in four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii. The GGPS genes were divided into three subgroups by evolutionary analysis. Subcellular localization prediction showed that they were mainly located in chloroplasts and plastids. The closely related GGPS contains a similar gene structure and conserved motif, but some genes are quite different, resulting in functional differentiation. Chromosome location analysis, collinearity and selection pressure analysis showed that many fragment duplication events occurred in GGPS genes. Three-dimensional structure analysis and conservative sequence analysis showed that the members of the GGPS family contained a large number of α-helices and random crimps, and all contained two aspartic acid-rich domains, DDxxxxD and DDxxD (x is an arbitrary amino acid), suggesting its key role in function. Cis-regulatory element analysis showed that cotton GGPS may be involved in light response, abiotic stress and other processes. A GGPS gene was silenced successfully by virus-induced gene silencing (VIGS), and it was found that the chlorophyll content in cotton leaves decreased significantly, suggesting that the gene plays an important role in plant photosynthesis. CONCLUSIONS: In total, 75 genes were identified in four Gossypium species by a series of bioinformatics analysis. Gene silencing from GGPS members of G. hirsutum revealed that GGPS plays an important regulatory role in photosynthesis. This study provides a theoretical basis for the biological function of GGPS in cotton growth and development.


Subject(s)
Gossypium , Plant Proteins , Gossypium/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Plant Proteins/genetics , Multigene Family , Regulatory Sequences, Nucleic Acid , Phylogeny , Gene Expression Regulation, Plant
3.
PeerJ ; 10: e12733, 2022.
Article in English | MEDLINE | ID: mdl-35036102

ABSTRACT

BACKGROUND: Cytoplasmic linker-associated proteins (CLASPs) are tubule proteins that can bind to microtubules and participate in regulating the structure and function of microtubules, which significantly affects the development and growth of plants. These proteins have been identified in Arabidopsis; however, little research has been performed in upland cotton. METHODS: In this study, the whole genome of the CLASP_N family was analyzed to provide theoretical support for the function of this gene family in the development of upland cotton fiber. Bioinformatics was used to analyze the family characteristics of CLASP_N in upland cotton, such as member identification, sequence characteristics, conserved domain structure and coevolutionary relationships. Real-time fluorescent quantitative PCR (qRT-PCR) was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber. RESULTS: At the genome-wide level, we identified 16 upland cotton CLASP_N genes. A chromosomal localization analysis revealed that these 16 genes were located on 13 chromosomes. The motif results showed that all CLASP_N proteins have the CLASP_N domain. Gene structure analysis showed that the structure and length of exons and introns were consistent in the subgroups. In the evolutionary analysis with other species, the gene family clearly diverged from the other species in the evolutionary process. A promoter sequence analysis showed that this gene family contains a large number of cis-acting elements related to a variety of plant hormones. qRT-PCR was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber and leaves, and Gh210800 was found to be highly expressed in the later stages of fiber development. The results of this study provide a foundation for further research on the molecular role of the CLASP_N genes in cotton fiber development.


Subject(s)
Cotton Fiber , Gossypium , Gossypium/genetics , Genome, Plant/genetics , Multigene Family/genetics , Plant Leaves
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 32(3): 520-3, 2007 Jun.
Article in Chinese | MEDLINE | ID: mdl-17611338

ABSTRACT

OBJECTIVE: To investigate and analyze the occurrence of 64,101 perinatal birth defects from 2000 to 2004, to determine the tendency of the incidence rate of birth defects and perinatal mortality, and to explore feasible and effective intervention strategy. METHODS: We investigated 64,101 perinatal infants who were born in 13 hospitals in Changsha from January 2000 to December 2004. The incidence rate of all birth defects, mortality of perinatal infants, the incidence rate of various kinds of birth defects, and the component rate of birth defects were analyzed. RESULTS: Altogether 1,050 neonate birth defects were found, with the incidence rate of 1.638%. The incidence rate of birth defects was increasing year-by-year in 2000 compared with that in 2002, 2003 and 2004, with significant differences (all P values<0.05): the incidence rate of birth defects in 2001 compared with that in 2002, 2003 and 2004, also with significant differences (P<0.05). Eight hundred seventy nine perinatal infants died, and the mortality was 1.371%. The mortality perinatal of infants increased in 2001 compared with that in 2002 and in 2003, with significant differences (P<0.05). The top 5 birth defects with the highest incidence were congenital heart disease, polydactly, auricle malformation, cheiloschisis, and palatoschisis, congenital hydrocephal in turn. The incidences of congenital heart disease and hydrocephal increased significantly. One hundred seventy seven fetuses were performed induced labor because of fetal defects from 2003. CONCLUSION: We must pay attention to the increasing tendency of birth defect incidence and perinatal mortality. Strengthening environmental protection and antenatal care can decrease the birth defect incidence. Performing antenatal examination and neonatal screening regularly can discover the birth defects in time. When severe birth defects occur, the induced labor should be performed.


Subject(s)
Congenital Abnormalities/mortality , Infant Mortality/trends , Perinatal Mortality/trends , China/epidemiology , Female , Humans , Incidence , Infant, Newborn , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...